Date: 06.11.2022 Max Marks: 100

ARJUNA BATCH MATHEMATICS: REVISION TEST-1 (SET B) Topic: Trigonometry II + Straight Lines + Circle

1.	The centre of the circle circumscribing the square whose four sides are $3x + y = 22$, $x - 3y = 14$, $3x + y = 62$ and
	x - 3y = 4 is

- (a) $\left(\frac{3}{2}, \frac{27}{2}\right)$ (b) $\left(\frac{27}{2}, \frac{3}{2}\right)$ (c) (27, 3)
- (d)
- If the circles $x^2 + y^2 6x 8y + c = 0$ and $x^2 + y^2 = 9$ have three common tangents then c = 02.

- 21

The maximum value of (cos α_1) (cos α_2) (cos α_n) under the condition $0 \le \alpha_1, \alpha_2,, \alpha_n \le \frac{\pi}{2}$ and 3. $(\cos \alpha_1)(\cot \alpha_2)....(\cot \alpha_n) = 1$ is

- (b) $\frac{1}{2^n}$ (c) $-\frac{1}{2^n}$
- (d) 1

A straight rod of length 9 units slides with its ends A, B always on the X and Y axis respectively. Then the locus 4. of the centroid of the triangle OAB is

- $x^2 + y^2 = 3$ (a)
- (b)
- $x^2 + v^2 = 9$ (c) $x^2 + v^2 = 1$
- (d) $x^2 + y^2 = 81$

5. A(-1, 1), B(5, 3) are opposite vertices of a square. The equation of the other diagonal (not passing through A, B) of the square is

- (a)

- 2x 3y + 4 = 0 (b) 2x y + 3 = 0 (c) y + 3x 8 = 0 (d) x + 2y 1 = 0

If $p_n = \cos^n \theta + \sin^n \theta$, then $2p_6 - 3p_4 + 1 =$ 6.

- (a) 2
- (b)

(c)

(d)

7. A circle passes through the origin and has its centre on y = x. If it cuts $x^2 + y^2 - 4x - 6y + 10 = 0$ orthogonally, its equation is

 $x^2 + y^2 - x - y = 0$ (a)

 $x^2 + y^2 - 6x + 4y = 0$ (b)

 $x^2 + y^2 - 2x - 2y = 0$ (c)

 $x^2 + y^2 + 2x + 2y = 0$

8.	The general solution of tan	$\theta = \frac{1}{\sqrt{3}}$ and cos	$\theta = \frac{-\sqrt{3}}{2} \text{ is } \theta =$
----	-----------------------------	---------------------------------------	---

(a)
$$n\pi + \frac{7\pi}{6}$$

$$n\pi + \frac{7\pi}{6}$$
 (b) $2n\pi + \frac{\pi}{2}$

(c)
$$2n\pi + \frac{7\pi}{6}$$

$$2n\pi + \frac{7\pi}{6} \qquad (d) \qquad n\pi + \frac{\pi}{6}$$

(a)
$$b(x^2 - y^2) = x(b^2 - c^2)$$

(b)
$$b(x^2 - y^2) = x(b^2 + c^2)$$

(c)
$$b(x^2 + y^2) = x(b^2 + c^2)$$

(d)
$$b(x^2 + y^2) = x(b^2 - c^2)$$

10. If
$$\cot \theta + \tan \theta = 2 \csc \theta$$
 then the general value of $\theta =$

(a)
$$2n\pi \pm \frac{\pi}{3}$$

$$2n\pi \pm \frac{\pi}{3} \qquad \qquad (b) \qquad 2n\pi \pm \frac{\pi}{6}$$

(c)
$$n\pi \pm \frac{\pi}{3}$$

(d)
$$n\pi \pm \frac{\pi}{6}$$

11. The general solution of
$$\csc^2 \theta = \frac{4}{3}$$
 is $\theta =$

(a)
$$n\pi \pm \frac{\pi}{4}$$

$$n\pi \pm \frac{\pi}{4}$$
 (b) $n\pi \pm \frac{\pi}{3}$

(c)
$$n\pi \pm \frac{\pi}{6}$$

(d)
$$n\pi \pm \frac{\pi}{2}$$

12. If
$$\tan 25^\circ = x$$
 then $\frac{\tan 155^\circ - \tan 115^\circ}{1 + \tan 155^\circ \cdot \tan 115^\circ} =$

$$(a) \qquad \frac{1+x^2}{2x}$$

$$\frac{1+x^2}{2x}$$
 (b) $\frac{1+x^2}{1-x^2}$

$$(c) \qquad \frac{1-x^2}{2x}$$

(d)
$$\frac{1-x^2}{1+x^2}$$

13. The general solution of x satisfying
$$\sin^2 x$$
. $\sec x + \sqrt{3} \tan x = 0$ is given by

(a)
$$x = \frac{n\pi}{2}$$

(b)
$$x = \frac{n\pi}{3}$$

(c)
$$x = n\pi$$

(d)
$$x = 2n\pi$$

14. The angles between the lines
$$2x - y + 3 = 0$$
 and $x + 2y + 3 = 0$ is

(a)
$$90^{\circ}$$

(c)
$$45^{\circ}$$

15. A circle having
$$2x + 3y - 5 = 0$$
 as a diameter cuts $x^2 + y^2 + 2x + 17y + 5 = 0$ and $x^2 + y^2 + 7x + 6y + 11 = 0$ orthogonally. Then its centre is

(a)
$$(4, -1)$$

(b)
$$(-5,5)$$

(c)
$$(1,-1)$$

$$(d)$$
 $(1,1)$

16.	If a cos θ	+ b sin	$\theta = p$ and a sin	$\theta - b \cos \theta$	$\theta = q$ then
-----	-------------------	---------	------------------------	--------------------------	-------------------

(a)
$$a^2 - b^2 = p^2 - q^2$$

$$a^2 - b^2 = p^2 - q^2$$
 (b) $a^2 + b^2 = p^2 + q^2$

(c)
$$a + b = p + c$$

(d)
$$a-b=p-q$$

(a)
$$x^2 + y^2 - 12x - 10y + 12 = 0$$

(b)
$$x^2 + y^2 - 12x - 10y + 32 = 0$$

(c)
$$x^2 + y^2 - 12x - 10y + 52 = 0$$

(d)
$$x^2 + y^2 - 12x - 10y + 10 = 0$$

18. The orthocentre of the triangle formed by
$$A(1, 2)$$
, $B(-2, 2)$, $C(1, 5)$ is

(a)
$$(1,5)$$

(b)
$$(-2, 2)$$

(c)
$$(0,3)$$

$$(d)$$
 $(1,2)$

19. The line
$$y = x + 3$$
 meets the circle $x^2 + y^2 = a^2$ at A and B then the equation of the circle on AB as diameter is

(a)
$$x^2 + y^2 + 3x - 3y - a^2 + 9 = 0$$

(b)
$$x^2 + y^2 + 3x + 3y - a^2 + 9 = 0$$

(c)
$$x^2 + y^2 - 3x + 3y - a^2 + 9 = 0$$

(d)
$$x^2 + y^2 - 3x - 3y - a^2 + 9 = 0$$

20. The length of the chord joining the points
$$(4 \cos \theta, 4 \sin \theta)$$
 and $(4 \cos (\theta + 60^\circ), 4 \sin (\theta + 60^\circ))$ of the circle $x^2 + y^2 = 16$ is

21. If
$$(-2, 6)$$
 is the image of the point $(4, 2)$ with respect to the line $L = 0$, then $L = 0$

(a)
$$3x - 2y + 5$$

(b)
$$3x - 2y + 10$$

(c)
$$2x + 2y - 5$$

(d)
$$6x - 4y - 7$$

22. If
$$\cos \theta + \sin \theta = \sqrt{2} \cos \theta$$
 then $\cos \theta - \sin \theta =$

(a)
$$\sqrt{2}\cos\theta$$

(b)
$$\sqrt{2} \sin \theta$$

(c)
$$-\sqrt{2}\cos\theta$$

(d)
$$-\sqrt{2}\sin\theta$$

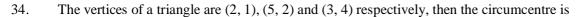
(a)
$$m + n$$

(b)
$$m-n$$

$$(d)$$
 m/n

25. If $(\sin \alpha + \csc \alpha)^2 + (\sec \alpha + \cos \alpha)^2 = k + \tan \alpha$	$\alpha + \cos^2 \alpha$ then k =
--	-----------------------------------

- (a) 9
- (b) 7
- (c) 5
- (d) 3


- (a) 2x + 3y = 12
- (b) 3x + 2y = 12
- (c) 4x 3y = 12
- (d) 5x 2y = 10
- 27. The greatest distance of the point (10, 7) from the circle $x^2 + y^2 4x 2y 20 = 0$ is
 - (a) 10
- (b) 15
- (c) 5
- (d) 0
- 28. The midpoint of (-5, 12) and (9, -2) divides the join of the points (-8, -5), (7, 10) in the ratio
 - (a) 2:1
- (b) 3:2
- (c) 1:3
- (d) 4:3
- 29. If A(2,-1) and B(6,5) are two pints. The ratio in which the foot of the perpendicular from (4,1) to AB divides it is
 - (a) 8:15
- (b) 5:8
- (c) -5:8
- (d) -8:5

30. The value of
$$\cos \frac{\pi}{7} + \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{5\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7}$$
 is

- (a) 1
- (b) –

(c) (

- (d) None of these
- 31. The angle between the tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is
 - (a) $\frac{\pi}{2}$
- (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{2}$
- (d) $\frac{7}{5}$
- 32. A straight line is such that its distance of 5 units from the origin and its inclination is 135°, the intercepts of the line on the co-ordinate axes are
 - (a) 5, 5
- (b) $\sqrt{2}, \sqrt{2}$
- (c) $5\sqrt{2}, 5\sqrt{2}$
- $(d) \qquad \frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}$
- 33. The chord of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to the circle $x^2 + y^2 = 1$ passes through the point
 - (a) (1, 2)
- (b) $\left(\frac{1}{2}, \frac{1}{4}\right)$
- (c) (2,4)
- (d) None of these

(a)
$$\left(\frac{13}{4}, \frac{-9}{4}\right)$$

(b)
$$\left(\frac{-13}{4}, \frac{9}{4}\right)$$

$$\left(\frac{13}{4}, \frac{-9}{4}\right) \qquad \text{(b)} \qquad \left(\frac{-13}{4}, \frac{9}{4}\right) \qquad \text{(c)} \qquad \left(\frac{-13}{4}, \frac{-9}{4}\right) \qquad \text{(d)}$$

(d)
$$\left(\frac{13}{4}, \frac{9}{4}\right)$$

35. The equation
$$k \cos x - 3 \sin x = k + 1$$
 is solvable only if k belongs to the interval

(a)
$$[4, \infty)$$

(b)
$$[-4, 4]$$

(c)
$$(-\infty, 4]$$

(d)
$$(-\infty, 4)$$

36. If
$$2x + y - 4 = 0$$
 is a bisector of angles between the lines $a(x - 1) + b(y - 2) = 0$, $c(x - 1) + d(y - 2) = 0$ the other angular bisector is

(a)
$$x - 2y + 1 = 0$$

(b)
$$x - 2y - 3 = 0$$

(c)
$$x - 2y + 3 =$$

$$x-2y-3=0$$
 (c) $x-2y+3=0$ (d) $x+2y-5=0$

37. The transformed equation of
$$x^2 + 6xy + 8y^2 = 10$$
 when the axes are rotated through an angle $\frac{\pi}{4}$ is

(a)
$$15x^2 - 14xy + 3y^2 = 20$$

(b)
$$15x^2 + 14xy - 3y^2 = 20$$

(c)
$$15x^2 + 14xy + 3y^2 = 20$$

(d)
$$15x^2 - 14xy - 3y^2 = 20$$

38. The points
$$(0, 0)$$
, $(1, 0)$, $(0, 1)$ and (t, t) are concyclic then $t =$

(a)
$$-1$$

(d)
$$-2$$

39. Given that for the circle
$$x^2 - y^2 - 4x + 6y + 1 = 0$$
 the line with equation $3x - y = 1$ is a chord. The midpoint of the chord is

(a)
$$\left(\frac{2}{5}, \frac{11}{5}\right)$$

(b)
$$\left(-\frac{2}{5}, \frac{11}{5}\right)$$

$$\left(\frac{2}{5}, \frac{11}{5}\right)$$
 (b) $\left(-\frac{2}{5}, \frac{11}{5}\right)$ (c) $\left(-\frac{2}{5}, -\frac{11}{5}\right)$ (d) $\left(\frac{2}{5}, -\frac{11}{5}\right)$

$$(d) \qquad \left(\frac{2}{5}, -\frac{11}{5}\right)$$

40. The common chord of
$$x^2 + y^2 = 16$$
 and $x^2 + y^2 - 4x - 4y = 0$ subtends at the origin an angle equal to

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{2}$$

41. In a
$$\triangle PQR$$
, if $3 \sin P + 4 \cos Q = 6$ and $4 \sin Q + 3 \cos P = 1$, then the angle R is equal to

(a)
$$\frac{5\pi}{6}$$

(b)
$$\frac{\pi}{6}$$

(c)
$$\frac{\pi}{4}$$

(d)
$$\frac{3\pi}{4}$$

42. If
$$(3, -2)$$
 is the midpoint of the chord AB of the circle $x^2 + y^2 - 4x + 6y - 5 = 0$ then AB =

43.
$$\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 85^\circ$$

(a)
$$7\frac{1}{2}$$

(b)
$$8\frac{1}{2}$$

(d)
$$9\frac{1}{2}$$

44. The line
$$y = x + a\sqrt{2}$$
 touchses the circle $x^2 + y^2 = a^2$ at the point

(a)
$$\left(-\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$$

(b)
$$\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$$

(c)
$$\left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$$

$$\left(-\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right) \qquad \text{(b)} \qquad \left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right) \qquad \qquad \text{(c)} \qquad \left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right) \qquad \qquad \text{(d)} \qquad \left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$$

45. The area of the parallelogram formed by the lines
$$2x - 3y + a = 0$$
, $3x - 2y - a = 0$, $2x - 3y + 3a = 0$ and $3x - 2y - 2a = 0$ in square units, is

(a)
$$\frac{a^2}{5}$$

(b)
$$\frac{2a^2}{5}$$

(c)
$$\frac{3a^2}{5}$$

(d) None of these

46. The distance of the point (2, 3) from the line
$$2x - 3y + 9 = 0$$
 measured along the line $x - y + 1 = 0$ is

(a)
$$4\sqrt{2}$$

(b)
$$2\sqrt{2}$$

(c)
$$\sqrt{2}$$

(d)
$$1/\sqrt{2}$$

47. If the distance between the points P(a cos
$$48^{\circ}$$
, 0) and Q(0, a cos 12°) is d, then $d^2 - a^2 =$

(a)
$$\frac{a^2}{4}(\sqrt{5}-1)$$

(b)
$$\frac{a^2}{4}(\sqrt{5}+1)$$

(a)
$$\frac{a^2}{4}(\sqrt{5}-1)$$
 (b) $\frac{a^2}{4}(\sqrt{5}+1)$ (c) $\frac{a^2}{8}(\sqrt{5}-1)$ (d) $\frac{a^2}{8}(\sqrt{5}+1)$

(d)
$$\frac{a^2}{8}(\sqrt{5}+1)$$

48. If
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$
 and $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1$, then $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$

49. If the pair of lines
$$xy - x - y + 1 = 0$$
 and the line $ax + 2y - 3 = 0$ are concurrent then $a = 0$

(a)
$$-1$$

50. The value of
$$2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) + 1$$
 is

Max Marks: 100 Date: 06.11.2022

ARJUNA BATCH MATHEMATICS: REVISION TEST-1 (SET B) ANSWER KEY Topic: Trigonometry II + Straight Lines + Circle

1.	(b)	2.	(d)	3.	(a)	4.	(b)	5.	(c)
6.	(c)	7.	(c)	8.	(c)	9.	(c)	10.	(a)
11.	(b)	12.	(c)	13.	(c)	14.	(a)	15.	(d)
16.	(b)	17.	(c)	18.	(d)	19.	(a)	20.	(c)
21.	(a)	22.	(b)	23.	(a)	24.	(a)	25.	(b)
26.	(a)	27.	(b)	28.	(a)	29.	(b)	30.	(b)
31.	(c)	32.	(c)	33.	(b)	34.	(d)	35.	(c)
36.	(c)	37.	(a)	38.	(b)	39.	(c)	40.	(d)
41.	(a)	42.	(b)	43.	(b)	44.	(a)	45.	(b)
46.	(a)	47.	(d)	48.	(c)	49.	(d)	50.	(b)